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Executive Summary 

This write-up describes a step-by-step process for creating an EOIR scenario, starting with basic fast 

parameters and then moving into more complex modeling. It also includes many common workarounds, 

tips for speeding up your workflow, rendering time information, and plenty of screenshots. 

Introduction 

If you have used heavy duty modeling and simulation tools that take hours or even days to run, I feel

your pain. STK’s EOIR is one of those heavy duty modeling and simulation tools for which even a

relatively small image can be computationally expensive to render. Besides throwing more hardware 

at the problem (faster processor and more memory), there are a few things you can do on the software

side to make the process more intuitive and save you time overall to make sure you end up with the 

results you want. 

Here are the three steps I use with STK and EOIR to get the imaging system data that I’m looking for: 

 Step 1: Sensor

 Step 2: Target

 Step 3: Bells and Whistles

That’s it. I’ll show you an example of this in action as well as all of the workarounds and tricks that I use 

to save myself time throughout the process. I chose a relatively simple scenario of an aircraft imaging 

the ground right here in the Exton area, starting from scratch and eventually building up to the 

point where I’ll have material maps, custom 3D models, and an atmospheric model. 

The inspiration for this FAQ began when we were preparing for a virtual EOIR training. As I was getting 

ready for this, I happened to present EOIR to a group of visitors here in Exton. We were starting 
from scratch to build scenarios, and I realized that we needed to slow things down and break 
up the independent sets of parameters to emphasize each one along the way. I’ll go through the 

three steps we mentioned with screenshots and using many default details so that you can easily 

replicate this process and apply it to your own domain-specific situations. Rendering can take quite a bit 
of time, and I’ll include time estimates as often as possible as well. 

I’m also assuming you’re already pretty familiar with STK. If you’re not and would like a little 

more background on STK, please check out AGI Technical Resources to find out more and get a 
better understanding of the STK fundamentals. Also, for a more general EOIR-specific background, you 
can check out the EOIR Overview. This is an applied process though, so don’t feel bad about skimming 

through it as an outline and looking up specific details on an as-needed basis.

http://support.agi.com/
http://help.agi.com/stk/index.htm#eoir/eoir_overview.htm


Step 1 – Setting up your imaging platform and basic sensor properties 
As I mentioned earlier, we’re starting from scratch. Here’s the brand new scenario that we’ll be 

filling out. We'll create a default place (our AGI headquarters in Exton, PA) and an aircraft flying a 

basic route around it with a sensor targeting the place.

Figure 1 – Default STK window with the Insert STK Objects wizard 

Figure 2 – Adding the default place and an aircraft circling it



Figure 3 – Adding a 5-degree conic sensor to the aircraft pointed at the place

Now that we have the basic STK scenario set up, let’s make that sensor an EOIR sensor and do a

sample rendering. 



The scene looks like all static, but if we change the details to fine, we’ll see the higher resolution

earth material map to know that at least we’re seeing the ground. 

Figure 4 – First look at the low-resolution earth material map simulation 

Figure 5 – EOIR simulation of earth with the default high-resolution material map 



Nothing too interesting here yet, but we can see large rectangular patches in the EOIR Sensor Scene. 
These rectangles are the resolution of the default EOIR material map; it's not very impressive at this 

field-of-view. However, if we zoom out 10x, we see a much larger portion of the earth and are able 

to see how the default resolution of the EOIR material map is more appropriate at the global scale. 

Figure 6 – Larger field-of-view simulation showing the horizon view 

We’ll be using a custom reflectance map and 3D target models later, but the focus at this step is to 

make sure our platform and sensor are set up in general. Rendering these images with all of the default 

values for a 128-by-128 pixel EOIR image takes less than a minute for either the 5-degree or 50-

degree half angles, although the larger field-of-view does take longer to render. We can next go into all 

of the tabs of the senor’s band being simulated, and we'll set up the correct parameters to see their 

effect.

This stage is about as far as I’d like to push the simulations, to keep their rendering time down to a 
reasonable level. Furthermore, if your sensor has many more pixels, you can also choose to render a 
subset of those pixels and increase the number of pixels later on in step 3. You can do this by either (a) 

taking a smaller central portion of the focal plane with fewer detectors and a smaller field-of-

view or (b) intentionally down-sample the detectors by keeping the same field-of-view 

but decreasing the number of detectors. These each have different consequences and really 

depend on if you would rather see full-resolution details of your target (for this I would choose a) 

or full content of the eventual image (for this I would choose b). 

You don’t necessarily need all of the sensor parameters finalized, but at least have the major 

parameters filled in to start getting an idea of if the early simulated data that is faster to generate is 
along the lines of what you are looking for. 



Another option to speed things up for imagery is to change the sensor’s output level from Sensor 

Output to Radiometric Input. This will render out the entrance aperture radiance and not take the time 

to apply any sensor-level effects. This will also be at a higher spatial resolution as well because EOIR 
oversamples each detector pixel four times along each dimension, and the Radiometric Input will be 

at this 4x oversampled level. 

Step 2 – Setting up your target parameters 

Next I’d like to set up a basic target that we’re looking at. For this particular scenario, I’m thinking of a 
car on the street that I’m interested in. Because EOIR has a separate terrain model than basic STK, it will 
not allow ground or water vehicles. If a surface vehicle in this scenario were following the STK terrain, it 
could appear that it is floating above or maybe even worse going underneath the EOIR WGS-84 surface. 
As a work-around, I use aircraft, explicitly set their elevation, and turn off the terrain.

Figure 7 – Turning off the terrain for the scenario 



Figure 8 – Adding a stationary EOIR target on the ground as an aircraft  

Figure 9 – EOIR configuration window  

However, after adding the target to the scenario, it isn’t immediately visible.

Now that I have added this target, I also need to add it to the EOIR configuration as well.



This is because the default target parameters for EOIR are a 1-meter radius gray sphere that is 50% 
reflective at about room temperature. There are a few ways we can make this target more visible,

either by increasing the size so it’s large enough to see or increasing the temperature so it’s bright 

enough to see. 

Figure 10 – EOIR simulation with the target in the image but not visible 

Figure 11 – Very large, visible target



Now we know that our sensor is set up in general, and we can see where our target of interest is in the 
scene. We can start going to the next level by setting up more appropriate size, temperature, and 

material properties, but I would recommend keeping the shape as a sphere initially so that the 

rendering time stays relatively fast. Both the larger target and hotter target images render slightly 

slower than without the target at all, but still under a single minute. 

A few potential gotchas can sneak in at this point also, and it will be faster to fix them now and confirm 

that in the imagery while the scenes can render relatively quickly, to be sure that we’re ready to go 
to the next step. 

Gotcha Tip #1 – Close the EOIR Sensor Scene 

When you’re making changes to STK-specific parameters that don’t necessarily impact the EOIR 
scene, it’s still likely to cause the scene to be regenerated. I find that when you’re done looking at a 
specific scene and you’re ready to start changing other scenario or object properties, it’s best to 
close the window until you’ll need it again. 

Gotcha Tip #2 – Sensor Orientation 

Different STK objects can have different body axes, and even when you think your sensor 
is pointed correctly, the "up" vector may surprise you. One of our SEs, Lauren McManus, figured out a 
common way to avoid this and wrote it up in a nice FAQ. Her idea is to create a custom vector in 
Analysis Workbench that’s from your sensor’s center to your target’s center. This way, when pointing 
the sensor, we can use the Along Vector option and specify a constraint vector, such as the platform’s 
zenith angle, to make sure that up in the image is constrained to up relative to the sensor’s platform. 

Figure 12 – Very hot, glowing visible target 

http://agiweb.force.com/faqs/articles/Keyword/Why-is-my-EOIR-synthetic-scene-rotated-incorrectly


Figure 13 – Creating a custom targeting vector 

Figure 14 – Pointing with a constraint vector to orient the sensor 



Gotcha Tip #3 – Target Orientation 

Unfortunately, work-arounds can come with unintended consequences. One of these is that the 
default orientation for an aircraft or satellite is such that the positive Z vector points downward. 
However, all of the included custom 3D models for EOIR ground vehicles or ground sites have an 
orientation with the positive Z vector up.

Figure 15 – Default aircraft orientation body axes 

To fix this, we can go into the target attitude and modify the properties to get our Z vector

pointing upward. 



Gotcha Tip #4 – Resolution Capability 

This is an interesting one. I’ll go into a little more detail for both the target specification and the sensor

design in general, as well as adding in a few helpful equations that might end up being useful. For 

starters, as I mentioned with the target orientation, EOIR comes with a number of low-polygon sample

3D models. EOIR can take quite a bit of time to render more complex 3D geometry, so all of the models 

have been decimated to be very simplistic but interesting enough to use for EOIR scenarios. In this case,
I’ll use a well-known and characterized target, the M1 Abrams tank. Here’s what that particular EOIR 

model looks like imported into Blender. 

Figure 16 – Properly oriented ground target showing the desired body axes 



Figure 17 – Loading EOIR custom ground models into Blender 



Figure 18 – Viewing the Abrams tank model in Blender

Also, from the Wikipedia page of this tank, it says the maximum dimension of this target is 9.77 
meters with the gun forward. So I’ll change my target EOIR shape properties to be a sphere with a radius 
of 4.885 meters, half the maximum dimension of our tank. I can also use STK to generate an AER 
(Azimuth, Elevation, Range) report that tells me my sensor-to-target range. It goes from about 18.4 km 
at the beginning of the scenario, down to about 14.5 km at the closest point, and then back up again 
near 18.9 km at the end of the loop.



Figure 19 – Reporting the sensor-to-target range throughout the scenario 

If you’re trying to set up your scenario to evaluate the visibility of a target, you can use the sensor’s FOV

and sensor-to-target range to calculate the spatial sampling of your sensor. I’ll call this the ground 

sample distance (GSD), although we’re only going to be looking at this measurement perpendicular to 

the sensor’s line-of-sight rather than actually projected onto the flat ground. I’ll also use the variable r 

for range. 

𝐺𝑆𝐷 = 𝐼𝐹𝑂𝑉 ∗ 𝑟 

In this case, the sensor’s IFOV was 1.367 mrad. At a range of 18.4 km, that would give us a GSD of about

25 meters, not nearly high enough in resolution to make out the details of our tank, let alone even see it.

Let's zoom in 10x by reducing our field-of-view half-angle from 5 degrees to 0.5 degrees and render a

scene. I can play our scenario until I see that the field-of-view footprint has a clear view of our target and

render it. Based on the spatial resolution, I would expect to be able to see our target now.



Figure 20 – Zoomed in target is visible 

And there it is. At the top right corner of our image is our target sphere. However, by only adjusting the 
field-of-view, the overall sensor parameters may become unbalanced. For example, the detector pitch is 
being calculated in this configuration, but in reality the detector pitch would be fixed and when zooming 

in. This would normally be done by increasing the focal length. The calculated pitch is about 15 
microns when zoomed in to the 0.5-degrees half-angle field-of-view with 128-by-128 pixels, which 

is pretty reasonable for a visible detector. But if we tried to zoom in another 10x, the calculated pitch 
for a field of view with 0.05-degrees half-angle would be 1.5 microns. As the pitch decreases, there are 
two dangers. The first is that the detectors may become too small to be physically practical. The second 
is, even if the detectors are still in a sensible range, the optics haven’t been adjusted and the aberrations 
on the focal plane may not be sufficient to resolve the target. The resulting image is shown below. As 
you can see, even though we are able to zoom in on the target, it’s starting to become blurry.



Figure 21 – Zoomed way in on our target of interest 

Besides the GSD calculation, we can rewrite the definition in terms of the pitch (p) and focal length (f) as:

𝐺𝑆𝐷

𝑟
=

𝑝

𝑓

Furthermore, we can characterize how blurry our system is with a convention called System-Q (Q). This 
is defined below as a function of the wavelength of light (λ) and the f-number of the system (f/#).

Normally you would want your system to have a Q of about 1.0. Anything lower would be a very sharp

imaging system and anything higher would become more blurry due to the optical diffraction. 

𝑄 =
𝜆 𝑓/#

𝑝

A spreadsheet can allow you to do some quick resolution calculations to determine the GSD at 

various ranges. This let's you see if you have sufficient spatial resolution, but also calculates the System-

Q as well to make sure that, even if you have sufficient spatial resolution, you aren’t stretching your

optics beyond their physical limits. Here are two examples, with the first varying the range and looking

at the impact on GSD, and the second varying the pitch and looking at the impact on System-Q.



GSD as a function of range 

System-Q as a function of detector pitch 

 Full Detector Resolution

 Custom reflectance/emissivity/temperature maps

 Custom 3D target models

 Atmosphere

 Full Star Catalog

These are all computationally expensive to include but add a significant amount of fidelity to the 

EOIR simulations. For the scenario we’ve been building up, four of these parameters are really 

applicable (we won’t see any stars looking down) and I’ll include image results as well as the time to 

generate each of these images with the full permutation of 16 combinations for these four options. 

I’ll only provide a little bit of detail for each of these parameters to keep things concise: 

• Full Resolution:

o Yes – 512x512 pixel rendering

o No – 128x128 pixel rendering

• Custom Reflectance Map:

o Yes – 3,000x2,187 pixel high-resolution reflectance map completely covering the sensor 
footprint on the ground

o No – Just using the default EOIR high-resolution material map 

Pitch [um] 15.00 15.00 15.00

Focal Length [m] 0.11 0.11 0.11

IFOV [urad] 136.36 136.36 136.36

Aperture Diameter [m] 0.055 0.055 0.055

F/# [ratio] 2.00 2.00 2.00

Range [km] 14 1.4 0.14

GSD at Range [cm] 190.91 19.09 1.91

System-Q [pixels] 0.07 0.07 0.07

Pitch [um] 15.00 1.50 0.15

Focal Length [m] 0.11 0.11 0.11

IFOV [urad] 136.36 13.64 1.36

Aperture Diameter [m] 0.055 0.055 0.055

F/# [ratio] 2.00 2.00 2.00

Range [km] 14 14 14

GSD at Range [cm] 190.91 19.09 1.91

System-Q [pixels] 0.07 0.67 6.67

 Step 3 – Turning on all the bells and whistles 

Things that I consider bells and whistles with EOIR are: 



 Atmosphere:

o Yes – Using the MODTRAN based atmospheric database for a rural aerosol 23 km

visibility with 45.8% relative humidity

o No – Using no atmosphere

The timing results I’ll present here are all from a Dell Precision M4600 with a 2.3 GHz i7 processor and 8 

GB of memory, which I would consider at the very low end of performance. That might be the good 

news, but what I can tell you is that this poor laptop has been abused for years and hasn’t aged well. 

Regardless, I want to show performance metrics that just about any other workstation can easily

outperform. I did restart the machine with the bare minimum other applications running, to give it a

fighting chance. I also restarted the machine between runs to make sure that these numbers could be

compared directly.  

An additional note is that all of these times in the table are reported for rendering times after the initial 

setup. This initial setup is performed on the first rendering, which will require more time but then

render faster for each subsequent rendering. When rendering a larger image size, new arrays will

need to be allocated; the time for this was negligible relative to the rendering time. The custom

reflectance map file will need to be read into memory (about 16 seconds), the custom 3D model file will 

need to be read into memory (the time for this was negligible relative to the rendering time), and the 

atmospheric database will need to be loaded (approximately 2 minutes). 

Full 

Resolution

Custom 

Reflectance Map

Custom 3D 

Target

Atmosphere 

Turned On

Time to Render 

[minutes:seconds]

No No No No 00:07.5

No No No Yes 00:38.4

No No Yes No 00:14.4

No No Yes Yes 04:46.8

No Yes No No 00:07.3

No Yes No Yes 00:37.8

No Yes Yes No 00:14.8

No Yes Yes Yes 04:45.0

Yes No No No 01:26.7

Yes No No Yes 02:03.4

Yes No Yes No 02:25.2

Yes No Yes Yes 08:08.7

Yes Yes No No 01:37.7

Yes Yes No Yes 02:17.2

Yes Yes Yes No 02:35.5

Yes Yes Yes Yes 08:06.4

• Custom 3D Target:
o Yes – Using the included 1,484 M_1A1_Abrams_Tank.obj 3D model
o No – Using the default EOIR sphere shape



These results show that difference between all the bells and whistles being turned off to being turned 
on is about 8 minutes per image. This is a huge amount of time that you shouldn’t commit to 
until you’re fairly certain that all of your parameters are set up and it’s rendering simply as you 
would expect. We can also see that the largest hits in this particular scenario are when both the 

atmosphere is turned on and we’re using a custom 3D model. This requires many more 

complicated atmospheric paths to be considered and calculated. 

Figure 22 – STK 3D scene window snapshot used to generate the reflectance map 

Figure 23 – All the bells and whistles turned on, with the tank target at the top right of the image



Conclusion 

I hope this discussion helps you get set up and running without all of the frustration that can come 
along with learning these lessons yourself the hard way. Moving forward, I’m going to be working hard 
to improve the performance of EOIR, so I hope to see all of these times reduced. As these performance 
improvements are rolled out, I’ll make sure I update this table. However, if you have 
performance requirements, we would love to hear about them. Currently I’m reviewing EOIR fail 
cases where potential customers could not move forward with consideration because of specific 
performance limitations. Not all of these performance metrics may be realistic. However, I’d like to 
make sure that we’re constantly grounded in reality. At the end of each development cycle, I’d like 
to make sure that what we’re delivering directly addresses the needs of our customers today as 

well as keeping EOIR headed in the right direction for future generations of engineers. 

Thank you, and I really hope this helps. 

- Pat North, EOIR Lead, Image and Computer Scientist




