

How to create a custom

Thruster Set using Engine Plugin

Version 1.0

Author Giuseppe Corrao

Date 20 January 2016

STK ver. 11.0.0

 How to create a custom Thruster Set

Page 2

Contents

Introduction .. 3

1 – Addressing the problem .. 4

1.1 – Engines and Satellite Specifications ... 4

1.2 – Orbit Specification .. 5

1.2 – Maneuver Strategy Specification ... 6

2 – Creating a Valid Plugin .. 7

2.1 - Create a new Solution as Class Library ... 7

2.2 – Configure the Class for COM .. 8

2.3 – Add COM References ... 9

2.4 – Add GUID and ProgID ... 10

2.5 - Implement the IAgGatorPluginEngineModel Interface .. 11

3 - Customizing the interface .. 12

3.1 – Add Global Variables .. 12

3.2 – Setup Init method .. 13

3.3 – Setup Evaluate method .. 13

3.4 – Setup Free method ... 14

3.5 – Setup PreNextStep and PrePropagate methods .. 14

4 – Create the PlusY Class ... 14

5 – Create the MinusY Class .. 17

6 – Register the plugin .. 20

6.1 – STK Registration ... 20

6.2 – Windows Registration .. 21

7 – Create a Suitable STK scenario .. 23

 How to create a custom Thruster Set

Page 3

Introduction

In computing, a plugin is a software component that adds a specific feature to an existing software

application: when an application supports plug-ins, it enables customization. AGI provides a variety of

ways to extend STK. These extensibility mechanisms can be divided into two distinct areas:

1) User Interface extensibility: allow users to create custom graphical user interfaces (GUI) and

controls for STK to provide user-defined workflows which can combine STK and in-house

functionality

2) Engine extensibility: allow users to customize just those aspects of the modeling that are really

non-generic while leveraging all the other generic capabilities of the COTS software.

Engine plugins provide the capability for users to incorporate customer-specific non-generic modeling

into computations. A plugin component is a user-supplied software component called by the application

at certain pre-defined event times within the computation cycle. The plugin is allowed to modify the

computation by adding additional considerations or modifying parameters. STK offers specific plugin

points for most computations. The interfaces and information available to plugins depend on the

particular plugin point.

Engine plugins can be either COM based (using .Net, C/C++, Perl, VBScript etc.) or script based (Perl,

MATLAB or VBScript). COM based engine plugin components provide a capability for users to

incorporate customer-specific non-generic modeling into computations. An engine plugin component is

a software component built using Microsoft's COM technology that is called by the application at certain

pre-defined event times within the computation cycle. The plugin is allowed to modify the computation

by adding additional considerations or modifying parameters. Here we focus on COM based plugin,

using VS2012 as developing environment and C# as programming language.

 How to create a custom Thruster Set

Page 4

1 – Addressing the problem

The tutorial goal is to define and implement a custom thruster set in STK to model a continuous, low

thrust transfer orbit from an inclined LEO parking orbit up to the GEO orbit. Since we want to apply a

custom strategy for the transfer orbit, we need a plugin implementing both the engines specifications

and the strategy itself (i.e. a thrust profile along time). To get the result several steps are required, but

basically we have those two main activities to carry out

1) To write and register the COM plugin.

2) To properly configure the Component Browser and the Astrogator MCS in STK.

A step by step tutorial is here provided to have the plugin up and running in STK 11, ready for further

enhancements and customizations.

1.1 – Engines and Satellite Specifications

Our thruster set is potentially composed by 6 different engines, firing along the three main directions in

body axis. The reason why we need 6 engines instead of three (just one in any body direction) is that we

assume a constant attitude profile along the entire maneuver, so there will be no attitude changes to re-

orient the spacecraft.

Engine name is related with the direction of thrust. Engines layout is the following:

Engines have 0.95 N as maximum thrust and 3250 sec as Isp.

 How to create a custom Thruster Set

Page 5

We assume the satellite attitude profile to be Nadir alignment with ECI velocity constraint (the default in

STK), so we have the ����� axis pointed towards the Earth’s center, the ����� axis constrained along the

velocity vector and the ����� axis orthogonal to the orbital plane. The thrust profile we’d like to

implement is relevant to this reference system.

By combining the instantaneous thrust for each engine we get a resulting thrust that is a vector pointing

in a direction identified by two angles:

• �, the angle between the ����� axis and the thrust component along the orbital plane and

• �, the angle between the orbital plane and the thrust vector.

� and � can be computed by STK, and the resulting thrust can be projected to any reference frame,

allowing the user to define the custom thrust profile along different frames (e.g. inertial).

1.2 – Orbit Specification

Our starting orbit is the following:

• Semimajor Axis = 7000 km

• Eccentricity = 0

• Inclination = 28.5

• RAAN = 0

• Argument of Periapsis = 0

• True Anomaly = 0

The target orbit is GEO.

 How to create a custom Thruster Set

Page 6

1.2 – Maneuver Strategy Specification

When we configure each engine with a custom thrust profile we can perform complex maneuvers that

involve the modification of more than one orbital parameter at time. This tutorial is focused on the

technical aspects about the plugin deployment/implementation, and not on the maneuver strategy

optimization: we are going to use a pretty basic and easy strategy to get our goal, but the user can

implement its own to model a very efficient transfer orbit.

Since both starting and target orbits are circular, we need to change just semimajor axis and inclination,

not the eccentricity. To accomplish this, we actually don’t need to thrust in the ±Z direction (if you

decide to model those engines for completeness, their thrust should be zero all time) and in –X

direction. Under this assumptions the � angle shall always be zero (no thrust component in the radial

direction); � varies with a sinusoidal law in the XY plane according with the following logic:

a) The +X thruster is constantly firing along the velocity direction with full thrust.

b) The +Y thruster is only firing during the ascending portion of the orbit with a sinusoidal profile

having maximum at the ascending node.

c) The –Y thruster is only firing during the descending portion of the orbit with a sinusoidal profile

having maximum at the descending node.

d) The +X thruster stopping condition is Semimajor Axis >= SMA target.

e) The ±Y thrusters stopping condition is inclination = 0 within a certain threshold.

Conditions b) and c) are represented in the Figure below:

±Y thrusts vary according with the cosine of the Argument of Latitude.

 How to create a custom Thruster Set

Page 7

2 – Creating a Valid Plugin

In this section we focus on the creation of a valid Astrogator Engine Model Plugin. This basically requires

the following steps:

1) Create a new collection of class libraries using Visual Studio.

2) Connect the plugin to STK using registration file.

Here we’ll use VS 2012 as developing environment. We’d like to create a single Solution containing

different projects (defined as class libraries), one for each of the engine. This way we can operate on any

individual engine independently from the others.

2.1 - Create a new Solution as Class Library

1) Run VS 2012 as Administrator and create a new Class Library. Set CustomThrusterSet as Solution

Name and PlusX as class Name:

2) Press OK, then right click the Class1.cs item in the Solution Explorer and rename it as Thrust.

 How to create a custom Thruster Set

Page 8

3) Click the Save All button to save all the files in the new project.

This will give us the opportunity to start working on our first engine model, as explained in the following

Sections.

2.2 – Configure the Class for COM

We need to ensure that the types in the assembly are visible and accessible to COM components. This is

done by registering the class for COM interoperability and setting the ComVisible attribute to true for

the entire assembly:

1) Right click the PlusX item in the Solution Explorer and choose Properties. Go to the Build tab and

check Register for Com Interop flag.

2) Expand the Properties folder in the Solution Explorer and open AssemblyInfo.cs:

3) Locate the ComVisible attribute and set it to true:

4) Save and close AssemblyInfo.cs.

 How to create a custom Thruster Set

Page 9

2.3 – Add COM References

1) Right-click References in the Solution Explorer and select Add Reference.

2) Select AGI AgGator 11, AGI AgGatorPlugin 11 and AGIStkPlugin 11. Those three libraries

contain the methods we need to get connected to STK 11 using COM:

3) When you click OK, the following items (namespace)are added to your project references:

4) Add using directive for those AGI namespaces, as well as the

System.Runtime.InteropServices namespace (which promotes interaction with external type

libraries):

using AGI.Plugin;

using AGI.STK.Plugin;

using AGI.Astrogator;

using AGI.Astrogator.Plugin;

using System.Runtime.InteropServices;

The Thrust.cs class should appear like this:

 How to create a custom Thruster Set

Page 10

Thrust.cs is the only class for this (and for the following ones) namespace. We still need to

define our project as a COM component.

2.4 – Add GUID and ProgID

Add the following class attributes to your class (in namespace area before class):

namespace PlusX

{

 [Guid("<GUID>")]

 [ProgId("<ProgID>")]

 [ClassInterface(ClassInterfaceType.None)]

 public class Thrust

 {

 ...

, where:

• <GUID> is a Globally Unique IDentifier, used to uniquely identify your component in the

Windows registry. On the Visual Studio Tools menu, use the Create GUID function to generate a

new GUID for your plugin, while Visual Studio Express Edition does not have a built-in GUID

generation tool.

There are many free GUID generators available online (https://www.guidgenerator.com/ ,

www.guidgen.com/). Here some GUIDs:

8b7cf9ae-7966-4970-8b70-712f05a0172b

62a95e66-646a-4722-8c5d-9b5697b26f2c

7a4a2ac8-1e33-43a2-8865-22a43c55c4b4

27eba233-d94c-42ad-b493-8fb5ef67e61a

c62018e7-050b-42e1-843d-6bdc9b1dcc0f

69d9972a-c93c-4027-9bab-c75651b84046

1f67dbdc-49d3-45d1-b14d-66e8262b02fe

c0bdb412-3858-4433-8382-67c18f8fe167

a768eba1-dabf-4705-9cc6-2bb4c8473b77

94cc07b9-93f2-4d0d-94d3-def5ba5f2785

 How to create a custom Thruster Set

Page 11

• <ProgID> is a unique string used to identify your plugin to STK. We here put the thruster name

as identifier:

When you finish, your GUID and ProgID should resemble this format:

2.5 - Implement the IAgGatorPluginEngineModel Interface

The next step is to change the class to implement the IAgGatorPluginEngineModel interface. This

interface is used to create a COM component that acts as an Astrogator Engine Model. The engine

model plugin is used to set the thrust magnitude, Isp and mass flow rate of an engine. The plugin

component will be called at certain event times defined by the interface (see the members of the

interface). During these calls, the component may request input values and set output values that can

affect the computation.

1- After the class name, add a colon, then add the interface name:

 public class Thrust : IAgGatorPluginEngineModel

Right-click the interface (IAgGatorPluginEngineModel). Select Implement Interface, then

Implement Interface again. When you implement the interface, its members will be exposed.

IAgUiPlugin interface’s members are the following:

Having the interface implemented means that all the interface’s members are ready to be

properly configured in the class body:

 How to create a custom Thruster Set

Page 12

There is also a public property named Name to set the name of the plugin used in messages.

3 - Customizing the interface

3.1 – Add Global Variables

1) Add the following variables after the class definition:

 public class Thrust : IAgGatorPluginEngineModel

 {
 private IAgUtPluginSite _site = null;

 private AgGatorPluginProvider _gatorPrv = null;

 private AgGatorConfiguredCalcObject _semimajorAxis = null;

Site interfaces represent the services made available to the plugin by the application. Each

application implements and extends the IAgUtPluginSite interface.

The Astrogator plugin provider allows a plugin to request a calculation object from the

Component Browser.

The Calc Object will evaluate the SMA value at runtime.

 How to create a custom Thruster Set

Page 13

3.2 – Setup Init method

1) Edit the Init method in this way:

 public bool Init(IAgUtPluginSite Site)

 {

 _site = Site;

 if (_site != null)

 {

 this._gatorPrv = ((IAgGatorPluginSite)(_site)).GatorProvider;

 if (_gatorPrv != null)

 {
 _semimajorAxis = _gatorPrv.ConfigureCalcObject("Semimajor_Axis");

 return true;

 }

 }

 return false;

 }

This will assure that the GatorProvider method returns data. The _semimajorAxis variable is feed

by the Semimajor_Axis calculation object in STK.

3.3 – Setup Evaluate method

1) Edit the Evaluate method in this way:

 public bool Evaluate(AgGatorPluginResultEvalEngineModel ResultEvalEngineModel)

 {

 if (ResultEvalEngineModel != null)

 {
 double thrust = 0.089;

 double isp = 1650;

 double semimajorAxis = _semimajorAxis.Evaluate(ResultEvalEngineModel);

 if (semimajorAxis >= 42164)

 {
 // target SMA reached

 thrust = 0;

 }

 ResultEvalEngineModel.SetThrustAndIsp(thrust, isp);
 }

Here we just push constant values (thrust and Isp) for the engine model using the

SetThrustAndIsp method. If the target SMA is reached, the engine stops firing.

 How to create a custom Thruster Set

Page 14

3.4 – Setup Free method

1) Edit the Free method by leaving it empty:

 public void Free()
 {

 }

3.5 – Setup PreNextStep and PrePropagate methods

1) Edit the methods this way:

 public bool PreNextStep(AgGatorPluginResultState ResultState)

 {

 return true;

 }

 public bool PrePropagate(AgGatorPluginResultState ResultState)

 {

 return true;

 }

4 – Create the PlusY Class

Well, we just finished configuring the engine that thrust in the +X direction, but we still need two other

engines to accomplish our goal (we only need three out of six engines for our strategy). The PlusY

thruster follows a sinusoidal profile, so we need to change the Evaluate method to reflect the new

situation. Let’s do the follow:

1) Add a new project by right clicking the Solution item in the Solution Explorer. Choose Class

Library as project type and name it PlusY:

 How to create a custom Thruster Set

Page 15

2) Press OK, then right click the Class1.cs item in the Solution Explorer and rename it as Thrust:

3) Repeat steps from Section 2.2 to 3.1 (included) to configure the PlusY project with the following

exceptions:

a) Be sure that (Section 2.4) the GUID is different than the other ones and the ProgId is set to

PlusY:

namespace PlusY

{
 [Guid("b040438e-c17d-44c9-b404-f415f1599f81")]

 [ProgId("PlusY")]

 [ClassInterface(ClassInterfaceType.None)]

b) In Section 3.1 define two additional variables to get the argument of latitude and the

inclination of the spacecraft over time from STK:

public class Thrust : IAgGatorPluginEngineModel

 {

 private IAgUtPluginSite _site = null;
 private AgGatorPluginProvider _gatorPrv = null;

 private AgGatorConfiguredCalcObject _argOfLat = null;

 private AgGatorConfiguredCalcObject _inc = null;

 How to create a custom Thruster Set

Page 16

c) Instead of using the code in Section 3.2, use the following to get the required calculation

objects:

 public bool Init(IAgUtPluginSite Site)
 {

 _site = Site;

 if (_site != null)

 {

 this._gatorPrv = ((IAgGatorPluginSite)(_site)).GatorProvider;

 if (_gatorPrv != null)

 {

 _argOfLat = _gatorPrv.ConfigureCalcObject("Argument_of_Latitude");

 _inc = _gatorPrv.ConfigureCalcObject("Inclination");

 if ((_argOfLat != null) && (_inc != null))

 {

 return true;

 }
 }

 }

 return false;

 }

a) Instead of using the code in Section 3.3, use the following to get the thrust level over time:

 public bool Evaluate(AgGatorPluginResultEvalEngineModel ResultEvalEngineModel)

 {

 if (ResultEvalEngineModel != null)

 {

 double thrust;
 double maxThrust = 0.089;

 double isp = 1650;

 double argOfLat = _argOfLat.Evaluate(ResultEvalEngineModel);

 double inc = _inc.Evaluate(ResultEvalEngineModel);

 thrust = maxThrust * (Math.Cos(argOfLat));
 if (thrust <= 0)

 {

 // only positive values for thrust are accepted by STK

 thrust = 0;

 }
 if (Math.Abs(inc * 180 / Math.PI) < 0.01)

 {

 // inclination is within threshold

 thrust = 0;

 }

 ResultEvalEngineModel.SetThrustAndIsp(thrust, isp);

 }

 return true;

 }

 How to create a custom Thruster Set

Page 17

This is a sinusoidal function of the Argument of Latitude, with inclination = 0 as stopping condition: until

the inclination is positive, this engine will fire southward during the ascending portion of the orbit to

reduce the inclination. Note that STK only accepts positive values of the thrust.

5 – Create the MinusY Class

This is the last engine to define in order to implement our basic thruster set. Let’s do the follow:

1) Add a new project by right clicking the Solution item in the Solution Explorer. Choose Class

Library as project type and name it PlusY:

2) Press OK, then right click the Class1.cs item in the Solution Explorer and rename it as Thrust:

3) Repeat steps from Section 2.2 to 3.1 (included) to configure the MinusY project with the

following exceptions:

 How to create a custom Thruster Set

Page 18

a) Be sure that (Section 2.4) the GUID is different than the other ones and the ProgId is set to

PlusY:

namespace MinusY

{
 [Guid("3d2d9468-a42a-47d3-b79e-a6a2988d4a85")]

 [ProgId("MinusY")]

 [ClassInterface(ClassInterfaceType.None)]

b) In Section 3.1 define two additional variables to get the argument of latitude and the

inclination of the spacecraft over time from STK:

public class Thrust : IAgGatorPluginEngineModel
 {

 private IAgUtPluginSite _site = null;

 private AgGatorPluginProvider _gatorPrv = null;

 private AgGatorConfiguredCalcObject _argOfLat = null;
 private AgGatorConfiguredCalcObject _inc = null;

c) In Section 3.2 set the code to get the required calculation objects:

 public bool Init(IAgUtPluginSite Site)

 {

 _site = Site;

 if (_site != null)

 {

 this._gatorPrv = ((IAgGatorPluginSite)(_site)).GatorProvider;

 if (_gatorPrv != null)
 {

 _argOfLat = _gatorPrv.ConfigureCalcObject("Argument_of_Latitude");

 _inc = _gatorPrv.ConfigureCalcObject("Inclination");

 if ((_argOfLat != null) && (_inc != null))
 {

 return true;

 }

 }

 }

 return false;

 }

 How to create a custom Thruster Set

Page 19

d) In Section 3.3 set the code to evaluate the Thrust:

 public bool Evaluate(AgGatorPluginResultEvalEngineModel ResultEvalEngineModel)

 {
 if (ResultEvalEngineModel != null)

 {

 double thrust;
 double maxThrust = 0.95;

 double isp = 3250;

 double argOfLat = _argOfLat.Evaluate(ResultEvalEngineModel);
 double inc = _inc.Evaluate(ResultEvalEngineModel);

 thrust = - maxThrust * (Math.Cos(argOfLat));
 if (thrust <= 0)

 {

 // only positive values for thrust are accepted by STK

 thrust = 0;
 }

 if (Math.Abs(inc * 180 / Math.PI) < 0.01)

 {
 // inclination is within threshold

 thrust = 0;

 }

 ResultEvalEngineModel.SetThrustAndIsp(thrust, isp);

 }

 return true;

 }

This is a sinusoidal function of the Argument of Latitude (the same as the PlusY class, but with a

minus sign before the function), with inclination = 0 as stopping condition: until the inclination

is positive, this engine will fire northward during the descending portion of the orbit to reduce

the inclination. Note that STK only accepts positive values of the thrust.

According with our custom thrust profile, the thruster set is now defined. If the remaining thruster are

also needed, just create the remaining three classes as shown before.

 How to create a custom Thruster Set

Page 20

6 – Register the plugin

Once the plugin is written and compiled, we ultimately need to do 2 additional steps

1. Register the .dll files with Windows.

2. Register the plugin with STK to notify the tool that it should look for your specific plugin.

There can be some confusion since both use the same terminology, but don’t necessarily mean the

same thing:

“Registering with Windows” is a process where registry keys are generated in the Windows registry

(regedit). This essentially relates the GUID assigned in the code with the physical location on the

machine where the .dll is located. Windows registration is accomplished by running regasm.exe from a

command line or checking the “Register for COM Interop” flag in Visual Studio (more on these later).

“Registering for STK/” is the process if placing an XML in one of a handful of directories in order to alert

STK that it should be looking for a specific plugin. The plugins’ names that appear in the STK are related

to the files registered with windows via the ProgID.

6.1 – STK Registration

This step is covered first because it is relatively simple, and it is easy to verify that it was successful. This

step involves placing an .xml file in one of those three possible directory locations:

1- Single User Folder (usually C:\Users\<username>\STK 11\Config\Plugins).

Plugins registered here will be available only to the single user with access to this My

Documents folder. Usually does not require administrative privileges.

2- All Users Folder (usually C:\ProgramData\AGI\STK 11\Plugins).

Plugins registered here will be available to all STK users on this machine. Usually does not

require administrative privileges.

3- STK Install Folder (usually C:\Program Files\AGI\STK 11\Plugins for 64 bit install or C:\Program

Files (x86)\AGI\STK 11\Plugins for 32 bit install).

Plugins registered here will be available to all STK users on this machine. Usually requires

administrative privileges to save/modify files here.

On startup, STK searches these directories for .xml files that identify what plugins are available.

For the thruster set under consideration we need an XML file for each of the engine model (i.e. dll files)

we compiled. Each of the XML file has the following structure:

 How to create a custom Thruster Set

Page 21

<?xml version = "1.0"?>

<AGIRegistry version = "1.0">
 <CategoryRegistry>

 <Category Name = "Engine Models">

 <Plugin DisplayName = "Custom Thruster Minus Y" ProgID = "MinusY"/>

 </Category>

 </CategoryRegistry>

</AGIRegistry>

, where the ProgID field shall match the ProgID of the relevant dll:

6.2 – Windows Registration

There are two methods of registering a COM plugin with STK. The first method is applicable if you have

the source code and are able to compile the solution/project using Visual Studio (or whatever IDE you

are using). All you need to do is simply check the “Register for COM Interop” flag under the Project

Properties/Build tab.

When the code is compiled, VS automatically registers the appropriate .dlls from the plugin with

Windows. Note that you need Admin rights to do this. If you do not have privileges, you will get an error.

The second method is valid when you only have the .dll files. This requires manual registration and

administrative privileges as well. Also you need to know which version of Microsoft .NET Framework was

used to compile the plugin, and that version shall be installed in the target machine.

Most machines are x64 bit, so these instructions are catered for that.

1. Navigate to the directory where you placed the .xml file. Create a folder specific to your plugin

within the Plugins folder. Name it as “Custom Thruster Set” and copy the .dll files (one for each

engine model) into this folder. Note you can pick any directory, however, it’s convenient to keep

the .xml and the .dlls in the same location.

 How to create a custom Thruster Set

Page 22

2. In Windows Explorer, navigate to C:\Windows\SysWOW64. Run cmd.exe using the “Run as

Administrator” option.

3. CD into C:\Windows\Microsoft.NET\Framework. There will be some folders called v#.#.###.

These represent the available versions of .NET that are installed on your machine. CD into the

version that the plugin was compiled against.

4. Run regasm /codebase “<filename>” where <filename> is the FULL path to the plugin .dll (file

name included).

5. You may get a warning regarding unsigned assemblies. This would be an issue if you have

multiple plugins using the same .dll name, so beware.

You can verify that the plugin was registered properly using Windows regedit.exe. If you happen to

know the GUID, then simply search for the GUID code. Within that folder there should be a directory

called InprocServer32. If you do not have the GUID, you can search for the ProgID instead. Recall the

ProgID is listed in the .xml file:

 How to create a custom Thruster Set

Page 23

7 – Create a Suitable STK scenario

Now that we have our plugin set up and running, we need to create an STK scenario that actually use

what we designed.

1) Create a new scenario and name it CustomThrusterSet. Give to it a duration of 2 months:

2) Go in Utility -> Component Browser. Browse to the Engine Model folder and duplicate the Plugin

Engine template:

3) Name the component as PlusX and give it a description:

4) Press OK, than open the newly created component. As string value, put the ProgID of the plugin

(PlusX in this case):

 How to create a custom Thruster Set

Page 24

5) Do the same for the other 2 engine models, changing the engine name and its ProgID according

with the engine to implement:

6) In the Component Browser, browse to the Thruster Sets folder. Choose the Thruster Set item

and duplicate it. Change the name to Custom Thruster Set:

7) Press OK, than open the newly created component. By default, there will be three engines

configured. For each engine change the name and the engine model fields. Also be sure that the

thruster direction is compliant with the engine under consideration:

8) Create a new Astrogator satellite and name it LowThrust. In the MCS, remove the default

Propagate segment and give the proper initial state to the satellite:

 How to create a custom Thruster Set

Page 25

9) Add a new Maneuver segment and name it LowThrust. Set the Maneuver Type option to be

Finite. Change the Attitude Control option to Attitude, then set Body as Ref Axes:

10) In the Engine tab, set Thruster Set as Propulsion Type and use the Custom Thruster Set

component:

 How to create a custom Thruster Set

Page 26

11) In the Propagator tab, set the Trip Value filed to 60 days:

12) Apply and run the MCS; it will take some time to propagate. You can optionally check the

Message Viewer to see if everything is up and running:

You should now see the low thrust trajectory in the 3D window:

After the propagation we can get some useful information from the satellite’s data provider. Here’s a

screenshot of SMA and Inclination over time:

 How to create a custom Thruster Set

Page 27

The following screenshot is reporting the thrust profile over time:

Also, the Maneuver Summary report shows the amount of fuel (209 kg) needed for the transfer

maneuver:

For the sake of comparison we may be interested in comparing the amount of fuel needed for a

chemical rocket to perform the same orbit transfer. TO do this, we need to model another Astrogator

satellite using the default chemical thrust and impulsive maneuvers. I won’t explain all the steps here

since this tutorial comes with the completed STK scenario attached.

Chemical maneuver is very fast (about 6 hours) at the expense of a pretty large fuel compsumption

(about 1000 kg with the default Astrogator engine):

